Graph Neural Network for Position Reconstruction

Shixiao Liang

DIDACTS

Data-Intensive Discovery Accelerated by Computational Techniques for Science

DIDACTS: a collaboration of physicists and ML experts

Challenges:

After Pulse Signals
Photoionization Signals
Dead PMTs
Saturated WFs

. .

Consequences:

Surface events inside FV Events outside the detector

. . .

Technics:

Graph Neural Networks

Probabilistic Graphical Models

Inverse Problem

. . .

Graph Neural Networks

- Deep Learning on graph domain
- Information passes between nodes through edges

Advantages:

- Graph reflects arrangement of PMT array & TPC shape
- Shared weights: locality / prevent overfitting
- Resistant to noises

PMT Position

Current Status

Model for ideal detector (no dead PMT)

- Graph construction:
 PMT as nodes
 Delaunay triangulation
- Implementation:Pytorch + Pytorch Geometric
- Data set: GEANT-based optical simulation
- Input node features:
 - X position of PMT
 - Y position of PMT
 - Integrated S2 area

Current Status

Next Steps & Summary

Go further with GNN:

- Optimize on graph structure
- Complete MC simulation: add detector effects (PMT gains, etc)
- Add time domain
- Find adequate pooling method
- Train the model on data
- Reconstruct position and energy at the same time

Summary:

- DIDACTS
- Graph Neural Networks have potential
- Developed GNN model for position reconstruction
- More GNN works in the future

